Agilent Technologies 87050A Option K12

 User's and Service Guide

 User's and Service Guide}

Use this manual with the following documents:

Agilent 8720D User's Guide
Part Number 08720-90288
and
Agilent 8720D Service Guide
Part Number 08720-90292

Agilent Technologies

Manufacturing Part Number: 87050-90102
Printed in USA
June 2005

Warranty Statement

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, AGILENT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AGILENT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD AGILENT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Definitions

- Specifications describe the performance of parameters covered by the product warranty (temperature - 0 to $55^{\circ} \mathrm{C}$, unless otherwise noted.)
- Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specification that 80% of the units exhibit with a 95% confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.
- Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

Safety Notes

The following safety notes are used throughout this manual. Familiarize yourself with each of the notes and its meaning before operating this instrument. All pertinent safety notes for using this product are located in Chapter 5, "Safety and Regulatory Information," on page 66 .

WARNING	Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

CAUTION Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

DFARS/Restricted Rights Notice

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Contents

1. General Information
Description 8
Verify the Shipment 9
Performance Specifications and Characteristics 10
Requirements 11
Electrical 11
Environmental 11
Preparations 13
Electrical 13
Environmental 14
Electrostatic Discharge Protection 15
Getting Started 16
Connecting and Turning On the Test Set 16
Setting the Test Set Address Switch 17
Performing the Operator's Check 18
Description 18
Procedure 18
Equipment Required 18
Process 18
2. Controlling the Test Set and Making Measurements
Introduction 20
Commands 21
Computer Control via Network Analyzer 21
Direct Computer Control 21
Manual Control via Network Analyzer 22
Calibrating the Test System 26
Example Setup 26
Making Measurements 28
3. Front/Rear Panel
Front Panel 32
The Port Connection Status LCD 32
The REFLECTION and TRANSMISSION Ports 32
Line Power Switch 33
Ports 1-12 33
The GROUND Connector 33
Rear Panel 34
The Parallel Port Input Connector 34
The Parallel Port Output Connector 34
The Printer/Test Set Switch 34
GPIB Connector 34

Contents

Address Switch 35
Line Module 35
Power Cables 36
The Line Fuse 38
Available Fuses 38
4. Service
Introduction 40
Performance Tests 41
Equipment Required 41
Insertion Loss 42
Return Loss 43
Isolation 45
Performance Test Record 46
Replaceable Parts 58
Troubleshooting 60
General Troubleshooting Notes 60
Troubleshooting Power Supply Problems 60
Troubleshooting the Front Panel Display Board 61
Troubleshooting the Controller and Switch Driver Boards 61
Theory of Operation 63
System Theory 63
A1 Power Supply Theory 63
A2 Front Panel Display Theory 63
A3 Controller Board and Switch Driver Board Theory 63
5. Safety and Regulatory Information
Safety and Regulatory Information 66
Introduction 66
Connector Care and Cleaning 66
Before Applying Power 66
Shipping Instructions 66
Warnings 67
Cautions 68
Instrument Markings 69
Contacting Agilent 70

1 General Information

Description

The Agilent Technologies 87050A Option K12 multiport test set is designed for use with Agilent Technologies 50Ω network analyzers such as the 8720D.
The multiport test set provides the ability to make single connection, multiple measurements of multiport devices such as distribution amplifiers, taps, switches, and couplers. These devices may have up to 12 ports. Throughput is increased by reducing the number of device reconnects the operator must perform. Switching is performed with mechanical switches.

The test set can be controlled by using an external GPIB controller, or parallel control. the test set with an 8720D network analyzer only.

Verify the Shipment

After the test set has been unpacked, keep the original packaging materials so they can be used if you need to transport the instrument.
Verify that you have received the items listed below in Table 1-1.
Inspect the test set and all accessories for any signs of damage that may have occurred during shipment. If your test set or any accessories appear to be damaged or missing, refer to "Contacting Agilent" on page 70.
Table 1-1 87050A Option K12 Accessories Supplied

Description	Part Number	Quantity
Power Cord	See Figure 3-3 on page 37	1
Front Handle Kit	$5063-9228$	1
Rack Mount Kit	$5063-9235$	1
Parallel Cable	$8120-6818$	1
RF Cable SMA (f) to SMA (m)	$87050-20345$	2
RF Cable N (m) to SMA (m)	$87050-20346$	2
User's and Service Guide	$87050-90102$	1

Performance Specifications and Characteristics

Table 1-2 Option K12 Performance Specifications and Characteristics

Parameter	Specification
Frequency Range	Isolation ${ }^{\text {a }}$
(
500 MHz to 20 GHz	
Return Loss (Switch Path On) 20.0 GHz	$\geq 100 \mathrm{~dB}$
50.0 MHz to 3.0 GHz	$\geq 18 \mathrm{~dB}$
3.0 GHz to 12.4 GHz	$\geq 12 \mathrm{~dB}$
12.4 GHz to 20 GHz	$\geq 10 \mathrm{~dB}$
Return Loss (Switch Path OFF)	$\geq 22 \mathrm{~dB}$ (Typical)
50.0 MHz to 3.0 GHz	$\geq 14 \mathrm{~dB}$ (Typical)
3.0 GHz to 12.4 GHz	$\geq 12 \mathrm{~dB}$ (Typical)
12.4 GHz to 20 GHz	

Insertion Loss:

50 MHz to 3.0 GHz	$\leq 2.0 \mathrm{~dB}$
3.0 GHz to 6.0 GHz	$\leq 3.0 \mathrm{~dB}$
6.0 GHz to 12.4 GHz	$\leq 4.0 \mathrm{~dB}$
12.4 GHz to 20 GHz	$\leq 5.0 \mathrm{~dB}$

Phase Deviation:

Reflection Port to Ports 1-12	$\pm 15^{\circ}$ @6 GHz (Typical)
	$\pm 40^{\circ}$ @20 GHz (Typical)
Transmission Port to Ports 1-12	$\pm 15^{\circ}$ @6 GHz (Typical)
	$\pm 40^{\circ}$ @20 GHz (Typical)
Input Power Damage Level	>1 watt (RF + dc)

a. From Port-to-Port (1 through 12). Due to the limitations of the 8720D network analyzer, isolation is measured from 500 MHz to 20 GHz .

Requirements

Electrical

The line power module on your test set is an autoranging input. It is designed to be used with an ac power source with a nominal voltage of either 115 V or 230 V .
The alternating-current (ac) power that is supplied to the test set must meet the following requirements:

Voltage: 90 to 250 Vac
Frequency: 48 to 66 Hz
Available power: 40 watts minimum
If the available AC line voltage is outside the 90 to 250 Vac range, an autotransformer that provides third wire continuity to earth ground may be used.

Environmental

Operating Environment

Indoor use only
Operating temperature: 0 to $55^{\circ} \mathrm{C}$
Maximum relative humidity: 80 percent for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50 percent relative humidity at $40^{\circ} \mathrm{C}$

Altitude: up to 15,000 feet (4,572 meters)
Enclosure protection: IP 20, according to IEC 529

CAUTION
This product is designed for use in INSTALLATION CATEGORY II, and POLLUTION DEGREE 2, per IEC 101 and 664 respectively.

Non-Operating Storage Conditions

Temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity: 0 to 90 percent relative at $+65{ }^{\circ} \mathrm{C}$ (non-condensing)
Altitude: 0 to 15,240 meters (50,000 feet)

Weight

Net: Approximately 9 kg
Shipping: Approximately 20 kg

Cabinet Dimensions

These dimensions exclude front and rear panel protrusions.
178 mm Height by 425.0 mm Wide by 500 mm Length (7.01 in by 16.73 in by 19.69 in)

Figure 1-1 Physical Dimensions

Preparations

Electrical

1. Ensure that the "Requirements" on page 11 are met.
2. Verify that the power cable is not damaged and that the power source outlet provides a protective earth ground contact.

NOTE \quad Note that Figure 1-2 depicts only one type of power source outlet. Refer to Figure 3-3 on page 37 to see the different types of power cord plugs that can be used with your test set. Cables are available in different lengths. For descriptions and part numbers of cables other than those described in Figure 3-3, Refer to "Contacting Agilent" on page 70.
3. If this product is to be powered by autotransformer, make sure the common terminal is connected to the neutral (grounded) side of the ac power supply.

Figure 1-2 Protective Earth Ground

WARNING
This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted into a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside the instrument, is likely to make the instrument dangerous. Intentional interruption of the protective conductor is prohibited.

Environmental

1. Ensure that the "Requirements" on page 11 are met.
2. If you are installing the test set into a cabinet, ensure there are at least two inches of clearance around the sides and back of the test set and the system cabinet. See Figure 1-3. The convection into and out of the test set must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the test set by $4 \times{ }^{\circ} \mathrm{C}$ for every 100 watts dissipated in the cabinet.

Figure 1-3 Ventilation Clearance Requirements

CAUTION If the total power dissipated in the cabinet is greater than 800 watts, forced convection must be used.

Electrostatic Discharge Protection

Protection against electrostatic discharge (ESD) is essential while removing assemblies from or connecting cables to the network analyzer. Static electricity can build up on your body and can easily damage sensitive internal circuit elements when discharged. Static discharges too small to be felt can cause permanent damage. To prevent damage to the instrument:

- always wear a grounded wrist strap having a $1 \mathrm{M} \Omega$ resistor in series with it when handling components and assemblies.
- always use a grounded, conductive table mat while working on the instrument.
- always wear a heel strap when working in an area with a conductive floor. If you are uncertain about the conductivity of your floor, wear a heel strap.
- always ground yourself before you clean, inspect, or make a connection to a static-sensitive device or test port. You can, for example, grasp the grounded outer shell of the test port or cable connector briefly.
- always ground the center conductor of a test cable before making a connection to the analyzer test port or other static-sensitive device. This can be done as follows:

1. Connect a short (from your calibration kit) to one end of the cable to short the center conductor to the outer conductor.
2. While wearing a grounded wrist strap, grasp the outer shell of the cable connector.
3. Connect the other end of the cable to the test port and remove the short from the cable.

Figure 1-4 shows a typical ESD protection setup using a grounded mat and wrist strap.
Figure 1-4 ESD Protection Setup

Getting Started

Connecting and Turning On the Test Set

The 87050A Option K12 test set is designed to be placed underneath the network analyzer, in a rack system or on a bench top, and connected as shown in Figure 1-5. Use the two APC $3.5 \mathrm{~mm} 50 \Omega$ jumper cables (5062-6682) that were shipped with the test set. See Table 1-1 on page 9 for a list of accessories supplied.

Figure 1-5 Connecting the Test Set to the Network Analyzer

Install the parallel cable (8120-6818) from the rear panel PARALLEL connector of the network analyzer to the rear panel PARALLEL INPUT connector of the test set.
Depending on how you will communicate with the test set (see Chapter 2, "Controlling the Test Set and Making Measurements.") connecting an GPIB cable from the controller to the rear panel of the network analyzer may also be necessary.

After the proper front and rear panel connections have been made, turn On the test set using the front panel line switch. The front panel line switch disconnects the mains circuits from the mains supply after the EMI filters and before other parts of the instrument.

After the proper front and rear panel connections have been made, turn On the test set using the front panel line switch. The front panel line switch disconnects the mains circuits from the mains supply after the EMI filters and before other parts of the instrument.

CAUTION For accurate, repeatable measurements, be sure to let the test set warm up for at least two hours. It is recommended that the test set not be turned Off on a regular basis. For the most stable and accurate measurements, leave the test set turned On at all times.

Setting the Test Set Address Switch

The test set is shipped with the GPIB address set to 12 , which sets the parallel address to 0 as in Figure 1-6. Refer to Chapter 2, "Controlling the Test Set and Making Measurements," on page 19 for the definition of the parallel address.
To set the GPIB address, set all five switches so that the sum of the switches in the On (or 1) position equal the desired address. In the example below, the two switches in the On position are 8 and 4 , thus the GPIB address of 12 .

To set the parallel address, use only the number 1 switch. Therefore, the possibilities for parallel port addressing are 0 or 1 .

NOTE When GPIB is used, the parallel address is ignored.

Figure 1-6 The Test Set Address Switch

Make sure the test set is turned Off before you change the position of any address switch.

Performing the Operator's Check

For information on controlling the test set, refer to Chapter 2, "Controlling the Test Set and Making Measurements," on page 19.

Description

The following operator's check is designed to provide you with a high degree of confidence that your test set is working properly. It is not designed to verify specifications. To verify specifications, refer to Chapter 4, "Service."

Procedure

This procedure is for performing a simple operator's check using a network analyzer of the proper frequency range and impedance.

Equipment Required

- Network Analyzer, 50Ω impedance (8720 D)
- Cable, $50 \Omega, 3.5 \mathrm{~mm}$ (8120-4921 or equivalent), quantity 2
- Calibration Kit, $50 \Omega, 3.5 \mathrm{~mm}$ (85052B)

Process

1. Connect the 50Ω cable to PORT 1 of the analyzer.
2. Perform a one-port reflection calibration at the end of the 50Ω cable over the frequency range of 50 MHz to 20 GHz on the analyzer. Verify that the calibration is active and that a cable terminated with a short displays a return loss of 0 ($\pm 0.2 \mathrm{~dB})$.
3. Connect the cable (already connected to PORT 1 of the analyzer) to the REFLECTION port on the 87050A Option K12 test set.
4. Measure the return loss of each path of the test set by selecting PORT 1 through

PORT 12, one at a time, using the network analyzer. Terminate each port being tested with a 50Ω load ($\geq-30 \mathrm{~dB}$). The resulting return loss should be $\geq-12 \mathrm{~dB}$ (the absolute value should be greater than 12).
5. Connect the cable (already connected to the REFLECTION port) to the TRANSMISSION port on the test set.
6. Measure the return loss of each path of the test set by selecting PORT 1 through PORT 12 , one at a time, using the network analyzer. Terminate each port being tested with a 50Ω load ($\geq-30 \mathrm{~dB}$). The resulting return loss should be greater than -12 dB (the absolute value should be greater than 12).

NOTE

This is an 80% confidence test only. A test set could pass this simple test and yet still not function properly. For more complete testing, see "Performance Tests" on page 41.

2	Controlling the Test Set and
Making Measurements	

Introduction

The 87050A Option K12 is a "slave" instrument: a controller must be used to control the test set. There are three ways in which the test set can be controlled:

- The controller can talk to the network analyzer using GPIB, which then controls the test set via the parallel connection.
- The controller can directly control the test set, using GPIB commands via the GPIB connector.
- A network analyzer equipped with a parallel connection can control the test set directly, or manually.

The next three sections discuss the three methods of control.

Commands

As previously mentioned, there are three ways to control the test set. The first two involve the use of a separate computer. The third way uses the network analyzer manually. These methods of control are detailed in the following sections.

Computer Control via Network Analyzer

One way to control the test set is to write GPIB commands to the 8720D network analyzer which then writes to the test set by way of the parallel port. See Figure 2-1 on page 22 for a diagram of connections for this type of control. The following examples use the variable [D] which is defined in Table 2-1 on page 23.

To use a parallel port connection with the 8720D analyzer, use a GPIB command to write bits on the parallel port. The following example assumes that the address of the network analyzer is 16 .

OUTPUT 716;"PARALGPIO;" Sets the parallel port for GPIO function

OUTPUT 716;"PARAOUT[D];" Programs all GPIO output bits (0 to 256) at once

NOTE Be sure to use the ending semi-colon.

Direct Computer Control

The second way to control the test set is to address the 87050A Option K12 test set directly over GPIB, using a controller to write directly to the test set's GPIB port. The following example assumes that the address of the test set is 12 .
OUTPUT 712;"command\$"
If using Quick Basic or Visual Basic, be sure to disable EOI and EOL before sending commands to the test set. Including the semicolon will not insure that these commands are disabled as would be the case in Basic/RMB. Using the Agilent 82335 GPIB Interface and Visual Basic, the following commands will disable the EOI and EOL, send the necessary data to the test set, and re-enable EOI and EOL. Be sure to re-enable the EOI and EOL before sending data to another instrument.

```
HpibEOi(hHpib;7,0) 'disable EOI
HpibEol(hHpib;7,"",0) 'disable EOL
HpibOutput(hHpib;712,chr$([D])) 'send command to test set
HpibEol(hHpib;7,chr$(13)+chr$(10),2) 're-enable EOL and set
to ' chr$ (13) +chr$ (10)
HpibEoi(hHpib;7,1,) 're-enable EOI
```

where Hpib specifies the handle returned by HpibOpen.
For more information on the EOI and EOL commands, refer to the programming library manual supplied with the Agilent 82335 interface.

Figure 2-1 Controlling the Test Set Over GPIB
AGILENT 8720D
NETWORK ANALYZER

AGILENT 87050A OPTION K12

NOTE

Connection to the network analyzer is not required when controlling the test set over GPIB.

Manual Control via Network Analyzer

The third method of sending commands uses the network analyzer to control the test set directly. This method is performed with the standard setup of the network analyzer working with the test set. A parallel cable is connected from the network analyzer output to the test set input on both rear panels.

The following example for manual control, using the network analyzer, uses normal text in brackets to indicate hard keys and italicized text in brackets to indicated soft keys.

Press:

[Seq]
[TTL I/O] [PARALLEL OUT ALL]
Use the arrow keys (\uparrow or \downarrow) to scroll to the desired test port address, or input the number directly using the hard keys [D] [x1], where D represents the decimal value of the test port address (see Table 2-1 on page 23).

Table 2-1 Test Port Addresses

Connection Path	Decimal [D]	Binary Equivalent	GPIB Command
Reflection to Port 1	0	00000000	refl_01
Reflection to Port 2	1	00000001	refl_02
Reflection to Port 3	2	00000010	refl_03
Reflection to Port 4	3	00000011	refl_04
Reflection to Port 5	4	00000100	refl_05
Reflection to Port 6	5	00000101	refl_06
Reflection to Port 7	6	00000110	refl_07
Reflection to Port 8	7	00000111	refl_08
Reflection to Port 9	8	00001000	refl_09
Reflection to Port 10	9	00001001	refl_10
Reflection to Port 11	10	00001010	refl_11
Reflection to Port 12	11	00001011	refl_12
Reflection Terminated	25	00011001	*r_term
Transmission to Port 1	26	00011010	tran_01
Transmission to Port 2	27	00011011	tran_02
Transmission to Port 3	28	00011100	tran_03
Transmission to Port 4	29	00011101	tran_04
Transmission to Port 5	30	00011110	tran_05
Transmission to Port 6	31	00011111	tran_06
Transmission to Port 7	32	00100000	tran_07
Transmission to Port 8	33	00100001	tran_08
Transmission to Port 9	34	00100010	tran_09
Transmission to Port 10	35	00100011	tran_10
Transmission to Port 11	36	00100100	tran_11
Transmission to Port 12	37	00100101	tran_12
Transmission Terminated	50	00110010	*t_term
All Ports Terminated	51	00110011	*all_term
Reset	52	00110100	*rst
Test Set Identification			idn?
Test Set Serial Number			sn?

To connect all ports to their internal 50Ω loads, send the following command by way of the parallel port:

```
OUTPUT 716;"PARALGPIO;"
```

OUTPUT 716;"PARAOUT 51;"

When a test set port is not in use, it is terminated in 50Ω.
If the 87050A Option K12 is being controlled by GPIB, you can identify the test set serial number by sending the following commands:

```
OUTPUT 712;"sn?"
ENTER 712;Sn$
DISP Sn$
```

NOTE This command may only be used with GPIB control.

Reset Command

When the Reset command is sent, the test set is set to the default state where the REFLECTION port is directed to reflection PORT 1 and the TRANSMISSION port is directed to transmission PORT 2.

Switch Count Commands

Reference the 87050A Option K12 block diagram, Figure 4-1 on page 62, for the switch paths.

To read the individual switch count, send the following command:

Output 712;"sw14?"

The above example shows the command for switch 14 only. This command returns a value which indicates the number of times the particular switch has been addressed and switched. To enter additional commands use Table 2-2 on page 25.

Table 2-2 Switch Count Commands

Switch Number	GPIB Command
SW11	sw11?
SW12	sw12?
SW14	sw14?
SW16	SW15?
SW50	sw16?
SW51	sw517?
SW53	sw50?
SW54	sw51?
SW55	sw52?
SW56	sw53?
SW57	sw54?
SW58	sw55?
SW59	sw56?
SW60	sw57?
	sw58?
	sw59?
	sw60?
	sw61?

Calibrating the Test System

After the test set has warmed up for two hours, it should be calibrated before making any measurements. Refer to the network analyzer user's guide to determine the type of calibration for the measurements you will be making.

You will need to calibrate each measurement path separately and store the calibration as an instrument state in the network analyzer. Refer to your network analyzer's user's guide for information on how to calibrate and store instrument states. Refer to Figure 2-2 for an example of the setup.

Example Setup

In this setup example, the following tests will be made:

- return loss on the DUT's input and 2 output ports (A and B)
- insertion loss (or gain) between the DUT's input and port A
- insertion loss (or gain) between the DUT's input and port B

Figure 2-2 Calibrating the Test System
AGILENT 8720D
NETWORK ANALYZER

AGILENT 87050A OPTION K12

For the best accuracy, you should perform a full two-port calibration between the test set PORT 1 and PORT 2, and again between PORT 1 and PORT 4. You need to save the calibrations as instrument states. See your analyzer user's guide for information on calibrations and saving instrument states.

NOTE
When performing a full two-port calibration and making subsequent measurements, you must use the transfer switch internal to the network analyzer to change the RF signal path direction. Do not use the test set to change the direction of the RF signal path when you are using a full two-port calibration. Doing so will render the calibration invalid.

Making Measurements

The following examples assume that you are using a parallel port connection with an 8720D, with the test set's parallel address set to 0. See "Setting the Test Set Address Switch" on page 17 for information on setting the test set's address.

Measuring Transmission

Refer to Figure 2-3 for the following discussion. With the 8720D set to measure forward transmission (S_{21}), the analyzer's RF source is being output through the analyzer's PORT 1 , and PORT 2 is set to receive the RF signal.

By using the following commands, you will connect PORT 1 of the test set to the REFLECTION port, and you will connect PORT 2 of the test set to the TRANSMISSION port. You will thus be measuring forward transmission through the device under test when measuring S_{21}. This will provide you with gain or insertion loss information.

```
OUTPUT 716;"PARALGPIO;"
OUTPUT 716;"PARAOUTO;"
OUTPUT 716;"PARALGPIO;"
OUTPUT 716;"PARAOUT27;"
```

If directly controlling the test set by way of the GPIB interface, use the following GPIB commands:

```
OUTPUT 712;"ref1_01"
OUTPUT 712;"tran_02"
```

Figure 2-3 Controlling the Test Set

Measuring Reflection

By leaving the DUT connected as in Figure 2-3 and setting the network analyzer to measure S_{11}, you can measure reflection or return loss.

Controlling the Test Set and Making Measurements
Calibrating the Test System
$\overline{3} \quad$ Front/Rear Panel

Front Panel

Figure 3-1 Front Panel Features

The Port Connection Status LCD

The port connection status LCD provides visual feedback of which port(s) are connected to the REFLECTION and TRANSMISSION ports of the test set. When the LCD displays a path connection, all other corresponding test ports are internally terminated in 50Ω.

The REFLECTION and TRANSMISSION Ports

The REFLECTION and TRANSMISSION ports are $50 \Omega 3.5 \mathrm{~mm}$ connectors. A 50Ω cable connects directly to the REFLECTION/TRANSMISSION port or PORT 1/PORT 2 of the network analyzer using the cables (5062-6682) that were shipped with your test set.

CAUTION	Check your analyzer's documentation for damage limits to the ports. Make sure that your test setup will not cause those limits to be exceeded.

Line Power Switch

The test set line power switch is located at the bottom left corner of the front panel. See Figure 3-1. The line power switch turns the power to the test set either On (\|) or Off (O).

The front panel line switch disconnects the mains circuits from the mains supply after the EMI filters and before others parts of the instrument.

Ports 1—12

PORTS 1 through 12 are $50 \Omega, 3.5 \mathrm{~mm}$ connectors that are used to connect to the device under test.

CAUTION Do not input more than 1 watt (RF and dc combined) to these ports, or damage to the internal RF switches or the analyzer may occur.

The GROUND Connector

The GROUND connector provides a convenient front panel ground connection for a standard banana plug.

Rear Panel

Figure 3-2 Rear Panel Features

The Parallel Port Input Connector

This input is connected to the network analyzer. The analyzer provides control signals that drive the switches inside the test set. In pass-through mode, it also accepts signals required to drive a printer.

The Parallel Port Output Connector

The output from this connector is used to either control another test set, or to control a printer, depending upon how the Printer/Test Set switch is set.

The Printer/Test Set Switch

This switch determines the function of the Parallel Port Output connector. When switched to Printer, the Parallel Port Output will pass-through printer driver signals. When switched to Test Set, an additional test set can be controlled from the Parallel Port Output connector.

GPIB Connector

This connector allows the test set to be connected directly to a controller.

Address Switch

The address switch sets the GPIB or parallel address of the test set. For more information refer to, "Setting the Test Set Address Switch" on page 17.

Line Module

The line module contains the power cable receptacle and the line fuse.

Power Cables

The line power cable is supplied in one of several configurations, depending on the destination of the original shipment.

Each instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument chassis. The type of power cable shipped with each instrument depends on the country of destination. See Figure 3-3, "Power Cable and Line (Mains) Plug Part Numbers" on page 37 for the part numbers of the power cables. Cables are available in different lengths. Use "Contacting Agilent" on page 70 for descriptions and part numbers of cables other than those described in Figure 3-3.

CAUTION
Always use the three-prong ac power cord supplied with this product. Failure to ensure adequate grounding by not using this cord may cause damage to the product.

WARNING	This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted into a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside the instrument, is likely to make the instrument dangerous. Intentional interruption is prohibited.

Figure 3-3 Power Cable and Line (Mains) Plug Part Numbers

$\text { Plug Type }{ }^{\text {a }}$	Cable Part Number	$\underset{\text { Description }}{\text { Plug b }}$	Length cm (in.)	Cable Color	For Use in Country
	8120-8705 8120-8709	Straight BS 1363A 90°	$\begin{aligned} & 229(90) \\ & 229(90) \end{aligned}$	Mint Gray Mint Gray	Option 900 United Kingdom, Hong Kong, Cyprus, Nigeria, Singapore, Zimbabwe
	8120-1369 $8120-0696$	Straight AS 3112 90°	$210 \text { (79) }$ $200(78)$	Gray Gray	Option 901 Argentina, Australia, New Zealand, Mainland China
	8120-1378 $8120-1521$	Straight NEMA 5-15P 90°	$\begin{aligned} & 203(80) \\ & 203(80) \end{aligned}$	Jade Gray Jade Gray	Option 903 United States, Canada, Brazil, Colombia, Mexico,Philippines, Saudi Arabia, Taiwan
	$8120-4753$ $8120-4754$	Straight NEMA 5-15P 90°	$\begin{aligned} & 229(90) \\ & 229(90) \end{aligned}$	Gray Gray	$\begin{aligned} & \text { Option } 918 \\ & \text { Japan } \end{aligned}$
	8120-1689 8120-1692	Straight CEE 7/VII 90°	$200 \text { (78) }$ $200(78)$	Mint Gray Mint Gray	Option 902 Continental Europe, Central African Republic, United Arab Republic
	$8120-2104$ $8120-2296$	Straight SEV Type 12 90°	$\begin{aligned} & 200(78) \\ & 200(78) \end{aligned}$	Gray Gray	Option 906 Switzerland
NOES	8120-2956 $8120-2957$	Straight SR 107-2-D 90°	$200(78)$ $200(78)$	Gray Gray	Option 912 Denmark
	$8120-4211$ $8120-4600$	Straight IEC 83-B1 90°	$\begin{aligned} & 200(78) \\ & 200(78) \end{aligned}$	Mint Gray Mint Gray	Option 917 South Africa, India
	$8120-5182$ $8120-5181$	Straight SI 32 90°	$200(78)$ $200(78)$	Jade Gray Jade Gray	$\begin{aligned} & \text { Option } 919 \\ & \text { Israel } \end{aligned}$

a. $\mathrm{E}=$ earth ground, $\mathrm{L}=$ line, and $\mathrm{N}=$ neutral.
b. Plug identifier numbers describe the plug only. The Agilent Technologies part number is for the complete cable assembly.

The Line Fuse

The line fuse, as well as a spare, reside within the line module. Figure 3-3 illustrates where the fuses are and how to access them.

Available Fuses

United States ($\mathbf{1 1 5} \mathbf{V}$ orientation)

Fuse (F 3 A/250 V, 2110-0780) U.L. listed and CSA certified

Europe (230 V orientation)

Fuse (F $3.15 \mathrm{~A} / 250$ V, 2110-0655) IEC certified and U.L. recognized

Figure 3-4 Location of Line Fuses

4
 Service

Introduction

This chapter contains information on the theory of operation, how to verify the performance of your test set, how to troubleshoot it if necessary and a block diagram.

NOTE \quad| Please read all applicable safety warnings and cautions in Chapter 5 |
| :--- |
| before servicing the test set. |

Performance Tests

Performance testing consists of measuring insertion loss, return loss, and isolation between all ports. For the most accurate measurements, the use of an 8720D 50Ω network analyzer is recommended and its use is assumed in these notes. Familiarity with $\mathrm{RF} /$ microwave measurements is also assumed. The use of adapters may be required and their effects should be accounted within the measurements.

Equipment Required

- 8720D Network Analyzer
- Test Port Extension Cables and Adapters
- 85052B Calibration Kit ($50 \Omega, 3.5 \mathrm{~mm}$)
- 909D or 00909-60006, $50 \Omega \mathrm{Load}$
NOTE Make a photocopy of the performance test record (later in this chapter)
\qquad to record the results of the performance tests.

There are no adjustments required for the 87050A Option K12 test set.
Set up the network analyzer with the following:

1. Number of points to 401
2. IF Bandwidth to 30 Hz

Perform a full two-port calibration from 50 MHz to 20 GHz at the ends of two cables attached to the two test ports of the 8720D. The cable on PORT 1 of the network analyzer should interface with the TRANSMISSION or REFLECTION ports on the front panel of the test set, and the cable on PORT 2 of the analyzer should interface with the test ports (1 through 12) on the front panel of the test set.

NOTE	The isolation calibration routine is done with 16 averages.
NOTE	Throughout this manual, the following conventions are observed:
	[Hardkeys] are labeled, front panel keys.
	Softkeys are display-defined keys (in the menus).

Insertion Loss

1. Connect the cable attached to PORT 1 of the network analyzer to the TRANSMISSION port of the test set.
2. Connect the cable from PORT 2 of the network analyzer to PORT 1 of the test set.
3. Select the all_term command using the network analyzer by pressing:
[SEQ] $>$ [TTL I/O] $>$ Parallel All Out $>$ [51] $>$ [X1]
This command will ensure that no conflicts will occur when selecting the test set ports. For complete information on controlling the test set, refer to Chapter 2, "Controlling the Test Set and Making Measurements," on page 19.

NOTE
 Reflection and transmission cannot be directed to the same port. If the

 test set does not switch to the port you have selected, switch the other port to either 1 or 4 .4. Select Transmission Port 1 by pressing:
[SEQ] $>$ [TTL I/O] > Parallel All Out $>$ [51] $>$ [X1]
Enter the decimal value (D in Table 2-1, "Test Port Addresses," on page 23 to select the port, then press:
[x1]
5. Check the status LCD on the test set to verify the port has been selected.
6. On the network analyzer, press:
[MENU] > Trigger Menu > Single
Wait until the analyzer is finished taking a sweep, then press:
[SCALE REF] > Auto Scale > [MARKER]
7. Locate the minimum value of the data trace for the following frequency ranges using the front panel knob:

- 50.0 MHz to 3.0 GHz
- 3.0 GHz to 6.0 GHz
- 6.0 GHz to 12.4 GHz
- 12.4 GHz to 20.0 GHz

8. Write the minimum value in the Performance Test Record, starting on page 48, for the port being measured.
9. Repeat steps 5 through 8 for the remaining test ports (2 through 12) listed in the Performance Test Record.
10.After all transmission ports have been measured, move the cable attached to the TRANSMISSION port to the REFLECTION port on the test set. Repeat steps 4 through 9 , but select the reflection ports instead of the transmission ports.

Return Loss

This test will check the internal termination load of each port, and the through match when the appropriate input port is terminated with a 50Ω load.

1. Connect the cable attached to PORT 1 of the analyzer to PORT 1 of the test set.
2. Connect a 50Ω load to the TRANSMISSION port of the test set.
3. Select the all_term command using the network analyzer by pressing:
[SEQ] $>$ [TTL I/O] $>$ Parallel All Out $>$ [51] $>$ [X1]
This command will ensure that no conflicts will occur when selecting the test set ports.
4. Select Transmission Port 1 on the network analyzer by pressing:
[SEQ] >[TTL I/O] > Parallel All Out
This will turn the switching path on.
Enter the decimal value (D in Table 2-1, "Test Port Addresses," on page 23) to select the port, then press:
[x1]
5. Check the status LCD to verify the port has been selected.
6. On the network analyzer press:
[MENU] > Trigger > Single
Wait until the analyzer is finished taking a sweep, then press:
[SCALE REF] > Auto Scale > [MARKER]
7. Locate the maximum value of the data trace for the following frequency ranges using the front panel knob:

- 50.0 MHz to 3.0 GHz
- 3.0 GHz to 12.4 GHz
- 12.4 GHz to 20.0 GHz

8. Write the value in the Performance Test Record starting on page 52 for the port being measured, under "Switch Path ON."
9. Repeat the previous two steps (7 and 8) for the remaining ports listed in the Performance Test Record, under "Switch Path ON."
10. Turnoff the switching path by pressing:
[SEQ] > [TTL I/O] > Parallel Out All >[51] > [X1]
11. Locate the maximum value of the data trace for the following frequency ranges using the front panel knob:

- 50.0 MHz to 3.0 GHz
- 3.0 GHz to 12.4 GHz
- 12.4 GHz to 20.0 GHz

12. Write the value in the Performance Test Record, starting on page 55 for the port being measured, under "Switch Path OFF."
13.Repeat the previous two steps (11 and 12) for the remaining ports listed in the Performance Test Record, under "Switch Path OFF."
14.After all the transmission ports have been measured, move the 50Ω load to the REFLECTION port on the test set. Repeat steps 3 through 13, but select the reflection ports instead of the transmission ports.

Isolation

NOTE Isolation needs to only be measured on adjacent ports. Two 50Ω loads are required for this test.

1. Connect two 50Ω loads to both the TRANSMISSION and REFLECTION ports on the test set.
2. Turn On the averaging by pressing:
[AVG] > Averaging On
3. Connect the two cables (attached to the network analyzer) to PORT 1 and PORT 2 of the test set. The exact order does not matter.
4. Select Reflection Port 1 on the network analyzer by pressing:
[SEQ] > [TTL I/O] > Parallel All Out
Enter the decimal value (D in Table 2-1, "Test Port Addresses," on page 23) to select the port, then press:
[x1]
5. Repeat step 4, but select Transmission Port 2 on the network analyzer. Check the status LCD on the test set for the port selected.
6. On the network analyzer, press:
[MENU] > Trigger Menu > Number of Groups > [16] > [X1]
Wait until the analyzer is finished making the measurement, then press:
[SCALE REF] > Auto Scale > [MARKER]
7. Locate the maximum value of the data trace for the 500 MHz to 20.0 GHz frequency range using the front panel knob.
8. Write the maximum value in the Performance Test Record, on page 57, for the ports being measured.
9. Repeat steps 5 through 8 for the next two adjacent ports, 2 and 3. Repeat again for ports 3 and 4 , and then for ports 4 and 5 , and so on until you have tested ports 11 and 12 . This completes the Performance Testing instructions.

Performance Test Record

The following pages (Performance Test Record) are designed to be duplicated and used as a template for either of the Transmission or Reflection Ports during each of the performance tests (Insertion Loss, Return Loss, and Isolation). At the top of each page, circle the appropriate input port, Transmission or Reflection, and write in the test date.

Special Notes:
\qquad
\qquad
\qquad
\qquad
\qquad

87050A Option K12 Insertion Loss Test Record

87050A Option K12 Insertion Loss Test Record

Test Description	Port	Specification	Measured Results	Measurement Uncertainty
Insertion Loss	Transmission			
3.0 GHz to 6.0 GHz	Port 1	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 2	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 3	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 4	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 5	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 6	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 7	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 8	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 9	$\leq 3.00 \mathrm{~dB}$	-	$\pm 0.3 \mathrm{~dB}$
	Port 10	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 11	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 12	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Reflection			
	Port 1	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 2	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 3	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 4	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 5	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 6	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 7	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 8	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 9	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 10	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 11	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 12	$\leq 3.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$

87050A Option K12 Insertion Loss Test Record

Test Description	Port	Specification	Measured Results	Measurement Uncertainty
Insertion Loss	Transmission			
6.0 GHz to 12.4 GHz	Port 1	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 2	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 3	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 4	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 5	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 6	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 7	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 8	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 9	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 10	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 11	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 12	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Reflection			
	Port 1	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 2	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 3	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 4	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 5	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 6	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 7	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 8	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 9	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 10	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 11	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 12	$\leq 4.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$

87050A Option K12 Insertion Loss Test Record

Test Description	Port	Specification	Measured Results	Measurement Uncertainty
Insertion Loss	Transmission			
12.4 GHz to 20.0 GHz	Port 1	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 2	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 3	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 4	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 5	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 6	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 7	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 8	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 9	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 10	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 11	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 12	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Reflection			
	Port 1	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 2	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 3	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 4	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 5	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 6	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 7	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 8	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 9	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 10	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 11	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$
	Port 12	$\leq 5.00 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$

87050A Option K12 Return Loss Test Record (Sw. Path ON)

Test Description	Port	Specification	Measured Results	Measurement Uncertainty
Return Loss	Transmission			
50.0 MHz to 3.0 GHz	Port 1	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
50.0 MHz to 3.0 GHz	Port 2	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
Switch Path ON	Port 3	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 4	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 5	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 6	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 7	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 8	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 9	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 10	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 11	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 12	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Reflection			
	Port 1	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 2	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 3	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 4	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 5	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 6	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 7	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 8	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 9	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 10	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 11	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$
	Port 12	$\geq 18 \mathrm{~dB}$		$\pm 1.5 \mathrm{~dB}$

87050A Option K12 Return Loss Test Record (Sw. Path ON)

Test Description	Port	Specification	Measured Results	Measurement Uncertainty
Return Loss	Transmission			
3.0 GHz to	Port 1	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 2	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
Switch Path ON	Port 3	$\geq 12 \mathrm{~dB}$		± 0.6 dB
	Port 4	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 5	$\geq 12 \mathrm{~dB}$		± 0.6 dB
	Port 6	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 7	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 8	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 9	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 10	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 11	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 12	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Reflection			
	Port 1	$\geq 12 \mathrm{~dB}$		± 0.6 dB
	Port 2	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 3	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 4	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 5	$\geq 12 \mathrm{~dB}$		± 0.6 dB
	Port 6	$\geq 12 \mathrm{~dB}$		± 0.6 dB
	Port 7	$\geq 12 \mathrm{~dB}$		± 0.6 dB
	Port 8	$\geq 12 \mathrm{~dB}$		± 0.6 dB
	Port 9	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 10	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 11	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 12	$\geq 12 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$

87050A Option K12 Return Loss Test Record (Sw. Path ON)

Test Description	Port	Specification	Measured Results	Measurement Uncertainty
Return Loss	Transmission			
12.4 GHz to	Port 1	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 2	$\geq 10 \mathrm{~dB}$		± 0.6 dB
20.0 GHz	Port 3	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
Switch Path ON	Port 4	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 5	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 6	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Port 7	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Port 8	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Port 9	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 10	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 11	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 12	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Reflection			
	Port 1	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 2	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 3	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Port 4	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 5	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Port 6	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Port 7	$\geq 10 \mathrm{~dB}$		± 0.6 dB
	Port 8	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 9	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 10	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 11	$\geq 10 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 12	$\geq 10 \mathrm{~dB}$	-	$\pm 0.6 \mathrm{~dB}$

87050A Option K12 Return Loss Test Record (Sw. Path OFF)

Test Description	Port	Specification (Typical)	Measured Results	Measurement Uncertainty
Return Loss $\mathbf{5 0 . 0} \mathbf{~ M H z}$ to $\mathbf{3 . 0} \mathbf{~ G H z}$ Switch Path OFF	Transmission Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 10 Port 11 Port 12 Reflection Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 10 Port 11 Port 12	$\begin{aligned} & \geq 22 \mathrm{~dB} \\ & \\ & \\ & \geq 22 \mathrm{~dB} \end{aligned}$		$\pm 1.5 \mathrm{~dB}$ $\pm 1.5 \mathrm{~dB}$ $\pm 1.5 \mathrm{~dB}$

87050A Option K12 Return Loss Test Record (Sw. Path OFF)

Test Description	Port	Specification (Typical)	Measured Results	Measurement Uncertainty
Return Loss	Transmission			
3.0 GHz to	Port 1	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
3.0 GHz to	Port 2	$\geq 14 \mathrm{~dB}$		± 0.6 dB
	Port 3	$\geq 14 \mathrm{~dB}$		± 0.6 dB
Switch Path OFF	Port 4	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 5	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 6	$\geq 14 \mathrm{~dB}$		± 0.6 dB
	Port 7	$\geq 14 \mathrm{~dB}$		± 0.6 dB
	Port 8	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 9	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 10	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 11	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 12	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Reflection			
	Port 1	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 2	$\geq 14 \mathrm{~dB}$		± 0.6 dB
	Port 3	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 4	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 5	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 6	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 7	$\geq 14 \mathrm{~dB}$		± 0.6 dB
	Port 8	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 9	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 10	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 11	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$
	Port 12	$\geq 14 \mathrm{~dB}$		$\pm 0.6 \mathrm{~dB}$

87050A Option K12 Return Loss Test Record (Sw. Path OFF)

Test Description	Port	Specification (Typical)	Measured Results	Measurement Uncertainty
Return Loss 12.4 GHz to 20.0 GHz Switch Path OFF	Transmission Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 10 Port 11 Port 12 Reflection Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 10 Port 11 Port 12	$\begin{aligned} & \geq 12 \mathrm{~dB} \\ & \\ & \geq 12 \mathrm{~dB} \end{aligned}$		$\begin{aligned} & \pm 0.6 \mathrm{~dB} \\ & \\ & \pm 0.6 \mathrm{~dB} \end{aligned}$

87050A Option K12 Isolation Test Record

Test Description	Port	Specification	Measured Results	Measurement Uncertainty
Isolation				
$\mathbf{5 0 0 . 0} \mathbf{~ M H z ~ t o ~}$	Port $1-2$	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
$\mathbf{2 0 . 0} \mathbf{~ G H z}$	Port $2-3$	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port 3-4	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port 4-5	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port 5-6	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port 6-7	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port 7-8	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port $8-9$	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port 9-10	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port $10-11$	$\geq 100 \mathrm{~dB}$	-	$\pm 5 \mathrm{~dB}$
	Port $11-12$	$\geq 100 \mathrm{~dB}$	-	

Service
Replaceable Parts

Replaceable Parts

The following table contains the list of replaceable parts for the 87050A Option K12 multiport test set. If any of these parts or assemblies are replaced, you must run all performance tests to verify conformance to specifications.
Table 4-1 Replaceable Parts

Replacement Part	Part Number	Quantity
Power Supply, 110W	$0950-2252$	1
Feet, Spring	$1460-1345$	2
Fuse, daughter control board	$2110-0518$	1
Fuse, 3A 250V (f), ac line module	$2110-0780$	2
Switch Assembly, 33314-024	$33314-60012$	12
Cover, top	$5002-1047$	1
Cover, bottom	$5002-1088$	1
Cover, side	$5002-3985$	2
Shield, power supply	$5002-4017$	1
Frame, rear	$5021-5806$	1
Strut, side	$5021-5837$	4
Frame, front	$5022-1189$	1
Foot	$5041-9167$	4
Trim, front frame side	$5041-9173$	2
Trim, top	$5041-9176$	1
Front Cap, strap handle	$5041-9186$	2
Rear Cap, strap handle	$5041-9187$	2
Standoff, rear panel	$5041-9188$	4
Handle, Strap	$5063-9210$	2
Front Handle Kit	$5063-9228$	1
Rack Mount Kit	$5063-9235$	1
Parallel Cable	$8120-6818$	1
Jumper Cable	$5062-6682$	2
LCD Cable	$8120-8794$	1
Assembly, switch	$08711-60129$	1
Rear Panel	$08720-00102$	1
Bracket, switch	$08720-00103$	3
RF Cable J53(59)-1	$08720-20189$	2
RF Cable J51(57)-2	$08720-20194$	2
RF Cable J12-2 to J11-6	$08720-20206$	1
RF Cable J12-6 to J11-2	$08720-20207$	1
RF Cable Odd FP Ports	$08720-20235$	6
Wire Harness, multiport ${ }^{1}$	$08720-60191$	1
Switch Support, 12 sw	$87050-00020$	1
Deck	$87050-00021$	1
RF Cable, J50(56)-1	$87050-20131$	2
		2

Table 4-1 Replaceable Parts (Continued)

Replacement Part	Part Number	Quantity
RF Cable, J51(57)-1 ${ }^{1}$	87050-20132	2
RF Cable, J52(58)-1 ${ }^{1}$	87050-20133	2
RF Cable, J54(60)-1 ${ }^{1}$	87050-20134	2
RF Cable, J55(61)-1 ${ }^{1}$	87050-20135	2
RF Cable, J50(56)-2 ${ }^{1}$	87050-20136	2
RF Cable, J52(58)-2 ${ }^{1}$	87050-20137	2
RF Cable, J53(59)-2 ${ }^{1}$	87050-20138	2
RF Cable, J54(60)-2 ${ }^{1}$	87050-20139	2
RF Cable, J55(61)-2 ${ }^{1}$	87050-20140	2
RF Cable, Reflection Port ${ }^{1}$	87050-20141	1
RF Cable, Transmission Port ${ }^{1}$	87050-20142	1
RF Cable, SW10-1 to SW50-2, SW11-1 to SW56-2 ${ }^{1}$	87050-20145	4
RF Cable, SMA (f) to SMA (m)	87050-20345	2
RF Cable, N (m) to SMA (m)	87050-20346	2
RF Cable Even FP Ports	87050-20347	6
Wire Harness, 04c, 0.3m, 13f-06f	87130-60021	1
Wire Harness, 04c, 0.13m, 04f-04f	87050-60022	1
Wire Harness, 40c, 0.09m, 40f-40f	87050-60023	3
Fan Assembly 5 cfm	87050-60027	1
Daughter Control Board	87050-60324	1
Ribbon Cable, 16c 16f/16f	87050-60055	8
Controller Mother Board ${ }^{1}$	87050-60175	1
Front Panel Subassembly ${ }^{1}$	87050-60179	1
User's and Service Guide ${ }^{1}$	87050-90102	1
Bracket, fan	87075-00005	1
Switch, 1p4t 26.5	87104-60001	2
Switch, 1p6t 26.5	87106-60009	6
Cable Assembly, ac line	87130-60007	1
Power Cord	See Figure 3-3	1

1. The parts indicated (1) are unique to this special option. To order replacement parts, please contact the Component Test PGU at (707) 577-6802 with the part number, module/model number and option number. If ordering parts through your local Agilent Technologies sales or service office, specify that they are ordered through the Component Test PGU.

NOTE Special options are built to order, therefore long lead times may be encountered when ordering replacement parts.

NOTE
Before replacing an assembly or board, inspect for obvious, easily repaired defects such as bent pins on ICs or cold solder joints.

Troubleshooting

This section contains information on troubleshooting the test set to the assembly level only. By following these procedures you should be able to determine whether the power supply, front panel, or main switch board need replacing. A block diagram is included at the end of this section as an aid in troubleshooting.

The theory of operation information can be found starting on page 63.

General Troubleshooting Notes

WARNING	Always turn the instrument power off before removing or installing an assembly.
NOTE	If you need to disassemble the instrument, be sure to work at an antistatic workstation and use a grounded wrist strap to prevent damage from electrostatic discharge (ESD). See Figure 1-4 on page 15.

Troubleshooting Power Supply Problems

Turn the instrument on. Check the condition of the LCD on the front panel:

1. If the LCD is off, check the main fuse located in the power supply filter at the rear of the instrument. Refer to Figure 3-4 on page 38.
2. If the fuse is in working order and the LCD is still off, check the cable and connections between the main board and front panel board.
3. If the cable and connections are working and the LCD is still off, there is still a possibility that the power supply is not supplying the necessary $+24 \mathrm{~V},+12 \mathrm{~V}$, and +5 V to the main board.

Disconnect the dc power cable from the power supply to the main switch board and measure the voltages. They should be +24 V , +12 V , and +5 V . If not, replace the power supply.

Troubleshooting the Front Panel Display Board

Turn the instrument power on and check the following:

1. Check the condition of each of the switching paths by issuing commands to switch each of the paths to either the transmission or reflection path. Ensure that the LCD indicates the appropriate path.
2. If the LCD indicates a wrong path, the problem can lie with either the daughter board or the main switch board. Determine where the problem is by measuring the RF path and the +24 V control voltage.
3. If the LCD does not display the proper path, check to see if the RF path has been switched. If the problem lies with the daughter board, replace it.

Troubleshooting the Controller and Switch Driver Boards

Turn On the instrument power. Check the condition of each of the switching paths by issuing commands to switch each of the paths to either the transmission or reflection path. Check each of the RF paths for connection. If an RF path is not connected to the necessary port or terminated in 50Ω, replace the controller and switch driver board.
Refer to Figure 4-1 on page 62 for a block diagram of the major components and the switching paths of the 87050A Option K12.

Service
Troubleshooting
Figure 4-1 87050A Option K12 Block Diagram

Theory of Operation

The theory of operation begins with a general description of the 87050A Option K12 multiport test set. This is followed by more detailed operating theory. The operation of each group is described briefly, to the assembly level only. Detailed component level circuit theory is not provided.

System Theory

The test set consists of three main components: a power supply, a front panel display, and a controller interface mother board. The purpose of the power supply is to provide power to both the front panel display and the main switch board. The front panel display serves to indicate the switching paths to the user. Finally, the controller interface mother board does the actual switching between the different ports.

A1 Power Supply Theory

The switching power supply provides regulated dc voltages to power all assemblies in the test set. A dc cable provides power to the main switch board. A connector from the main switch board to the front panel display provides dc power and control signals to the front panel. The power supply provides the following supplies: $+24 \mathrm{~V},+12 \mathrm{~V}$, and +5 V .

A2 Front Panel Display Theory

The front panel display consists of an LCD. The LCD is divided into a reflection line and a transmission line. The reflection line indicates which one of the sixteen ports is connected to the REFLECTION port. The transmission line indicates which one of the sixteen ports is connected to the TRANSMISSION port. Control signals and dc power are provided by a cable connected to the main switch board.

A3 Controller Board and Switch Driver Board Theory

Refer to Figure 4-1 on page 62 for the following discussion.
The mother board (controller board) and daughter board (switch driver board) provide the bias for the switching paths for the various test ports to the TRANSMISSION and
REFLECTION ports. The front panel display contains an LCD that indicates the switched ports. A particular test port (1 through 12) can be in one of three states. The three states are:

1. switched to the forward path
2. switched to the reverse path
3. terminated in 50Ω

When a port is not connected it is automatically terminated in 50Ω.
The test set consists of twelve 1-by-2 switches, four 1-by-6 switches, and two 1-by-4 switches. The 1-by-2 switches divide each of the input ports (1 through 12) into two separate paths, the transmission path or the reflection path.
Each path, transmission or reflection, is routed to a bank of two 1-by-6 switches. Each bank of switches is routed to a single 1-by-4 switch, where it becomes either the TRANSMISSION port or the REFLECTION port.
All switches are mechanical and are biased according to the necessary switching path. A user interface, through the GPIB and parallel ports, converts the necessary input signals to the control signals, which then control the switching paths.
$5 \quad$ Safety and Regulatory Information

Safety and Regulatory Information

Introduction

Review this product and related documentation to familiarize yourself with safety markings and instructions before you operate the instrument. The documentation contains information and warnings that must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

Connector Care and Cleaning

If alcohol is used to clean the connectors, the power cord to the instrument must be removed. All cleaning should take place in a well ventilated area. Allow adequate time for the fumes to disperse and moist alcohol to evaporate prior to energizing the instrument.

Before Applying Power

Verify that the product is configured to match the available main power source. If this product is to be powered by autotransformer, make sure the common terminal is connected to the neutral (grounded) side of the ac power supply.

Shipping Instructions

You must always call the Agilent Technologies Instrument Support Center to initiate service before retuning your instrument to a service office. See "Contacting Agilent" on page 70. Always transport or ship the instrument using the original packaging if possible. If not, comparable packaging must be used. Attach a complete description of the failure symptoms.

Statement of Compliance

This instrument has been designed and tested in accordance with IEC Publication 61010-1, Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

Warnings

WARNING	"WARNING": Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.
	Warnings applicable to this instrument are:
WARNING	If this product is not used as specified, the protection provided by the equipment could be impaired. This product must be used in a normal condition (in which all means for protection are intact) only.
WARNING	No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers.
WARNING	For continued protection against fire hazard, replace line fuse only with same type and rating. The use of other fuses or materials is prohibited.
WARNING	This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted into a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside the instrument, is likely to make the instrument dangerous. Intentional interruption is prohibited.
WARNING	The power cord is connected to internal capacitors that may remain live for 5 seconds after disconnecting the plug from its power supply.
WARNING	These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.
WARNING	The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the product from all voltage sources while it is being opened.

WARNING	To prevent electrical shock, disconnect the Agilent Technologies model 87050A Option K12 from mains before cleaning. Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally.

Cautions

CAUTION CAUTION: Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the product. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

Cautions applicable to this instrument are:

CAUTION

\qquad
Always use the three-prong ac power cord supplied with this instrument. Failure to ensure adequate earth grounding by not using this cord may cause instrument damage.

CAUTION
This instrument has autoranging line voltage input. Be sure the supply voltage is within the specified range.

CAUTION
This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.

Ventilation Requirements: When installing the instrument in a cabinet, the convection into and out of the instrument must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the instrument by $4 \times{ }^{\circ} \mathrm{C}$ for every 100 watts dissipated in the cabinet. If the total power dissipated in the cabinet is greater than 800 watts, then forced convection must be used.

Instrument Markings

1	When you see this symbol on your instrument, you should refer to the instrument's instruction manual for important information.
4	This symbol indicates hazardous voltages.
	The laser radiation symbol is marked on products that have a laser output.
\sim	This symbol indicates that the instrument requires alternating current (ac) input.
$C \in$	The CE mark is a registered trademark of the European Community. If it is accompanied by a year, it indicates the year the design was proven.
SB	The CSA mark is a registered trademark of the Canadian Standards Association.
ISM1-A	This text indicates that the instrument is an Industrial Scientific and Medical Group 1 Class A product (CISPR 11, Clause 4).
1	This symbol indicates that the power line switch is ON.
0	This symbol indicates that the power line switch is OFF or in STANDBY position.
C 10149	This symbol indicates the product meets the Australian Standards.
$\underline{1}$	Safety Earth Ground. This is a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and secured against any unintended operation.

Contacting Agilent

By internet, phone, or fax, get assistance with all your test and measurement needs.

This information supersedes all prior HP contact information.			
Online assistance: wWw. agilent. com/find/assist			
Americas			
Brazil (tel) (+55) 1133517012 (fax) (+55) 1133517024	Canada (tel) +1 8778944414 (fax) +1 3036623369	Mexico (tel) 18002542440 (fax) 18002544222	United States (tel) 8008294444 (alt) (+1) 3036623998 (fax) 8008294433
Asia Pacific and Japan			
Australia (tel) 1800225574 (fax) 1800681776 (fax) 1800225539	China (tel) 8008100508 (alt) 8008100510 (fax) 8008100507 (fax) 8008100362	Hong Kong (tel) 800933229 (fax) 800900701	India (tel) 1600112626 (fax) 1600112727 (fax) 1600113040
$\begin{aligned} & \text { Japan (Bench) } \\ & \text { (tel) } 0120320119 \\ & \text { (alt) }(+81) 426567799 \\ & (\text { fax }) 0120012144 \end{aligned}$	Japan (On-Site) (tel) 0120802363 (alt) $(+81) 426567498$ (fax) $(+81) 426608953$	Singapore (tel) 18002750880 (fax) (+65) 67551235 (fax) (+65) 67551214	South Korea (tel) 0807780011 (fax) 0807780013
Taiwan (tel) 0800047669 (fax) 0800047667 (fax) 88634920779	Thailand (tel) 180027585822 (alt) (+66) 22675913 (fax) 1800656336	Malaysia (tel) 1800880399 (fax) 1800801054	
Europe			
Austria (tel) 08208744 11* (fax) 0820874422	Belgium (tel) (+32) (0)2 4049340 (alt) (+32) (0)2 4049000 (fax) (+32) (0)2 4049395	Denmark (tel) (+45) 70131515 (alt) (+45) 70137313 (fax) (+45) 70131555	Finland (tel) (+358) 108552100 (fax) (+358) (0) 108552923
France (tel) 0825010700^{*} (alt) (+33) (0)1 64535623 (fax) 0825010 701*	Germany (tel) 0180524 6333* (alt) 0180524 6330* (fax) 0180524 6336*	Ireland (tel) (+353) (0)1 890924204 (alt) (+353) (0)1 890924206 (fax)(+353) (0)1 890924024	Israel $($ tel $)(+972) 39288500$ $(f a x)(+972) 39288501$
$\begin{array}{\|l} \hline \text { Italy } \\ (\text { tel })(+39)(0) 292608484 \\ (\text { fax })(+39)(0) 295441175 \end{array}$	Luxemburg (tel) (+32) (0)2 4049340 (alt) (+32) (0)2 4049000 (fax) (+32) (0)2 4049395	Netherlands (tel) (+31) (0)20 5472111 (alt) (+31) (0)20 5472000 (fax) (+31) (0)20 5472190	Russia (tel) (+7) 0957973963 (alt) (+7) 0957973900 (fax) (+7) 0957973901
Spain (tel) (+34) 916313300 (alt) $(+34) 916313000$ (fax) (+34) 916313301	Sweden (tel) 0200882255^{*} (alt) (+46) (0)85064 8686 (fax) 020120 2266*	Switzerland (French) (tel) 0800805353 opt. 2* (alt) (+33) (0)1 64535623 (fax) (+41) (0)22 5675313	Switzerland (German) (tel) 0800805353 opt. 1* (alt) (+49) (0)7031 4646333 (fax) (+41) (0)1 2727373
Switzerland (Italian) (tel) 0800805353 opt. 3* (alt) (+39) (0)2 92608484 (fax) (+41) (0)22 5675314	United Kingdom (tel) (+44) (0)7004 666666 (alt) (+44) (0)7004 123123 (fax) (+44) (0)7004 444555		
$($ tel $)=$ primary telephone number; $($ alt $)=$ alternate telephone number; (fax $)=$ FAX number; * $=$ in country number 11/16/04			

